$1^{\text {st }}$ Grade Level Expectation Topic	Benchmark What the report card says	Focus Area within Benchmark Common Core State Standards
Operations and Algebraic Thinking	Uses addition and subtraction within 20 to solve word problems by using objects, drawings and equations with an unknown value.	Uses addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions For example: There were 18 basketballs and 3 bounced away. How may basketballs are left? e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
		Solves word problems that call for addition of three whole numbers whose sum is less than or equal to 20 For example: Joey has 5 red suckers, 7 blue suckers and 6 green suckers. How many suckers in all? e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
	Understands and applies properties of operations and the relationship between addition and subtraction (fact families in March and missing addends in June).	Applies properties of operations as strategies to add and subtract (Associative property of addition). Example: if 8+3=11 is known, then 3+8=11 is also known (commutative property of addition). To add $2+6+4$, the second two numbers can be added to make a ten, so $2+6+4=2+10=12$ (associative property of addition).
		Understands subtraction as an unknown-addend problem. For example, subtract $10-8$ by finding the number that makes 10 when added to 8 .
		Determines the unknown whole number in an addition or subtraction equation relating three whole numbers. For example: determine the unknown number that makes the equation true in each of the equations $8+?=11,5=?-3,6+6=$?
	Adds with speed and accuracy.	Relates counting to addition and subtraction.
		Adds and subtracts within 20 demonstrating fluency for addition and subtraction within 10. Uses strategies such as counting on ($8+5=13$ count on from the largest number (8) $9,10,11,12$, 13): making ten (e.g., $8+6=8+2+4=10+4=14$): decomposing a number leading to a ten (e.g., 13-4

		$=13-3-1=10-1=9$); using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, one knows 12-8 = 4); and creating equivalent but easier or known sums (e.g..., adding $6+7$ by creating the know equivalent $6+6+1=12+1$ $=13$).
		Understands the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example: which of the following are true and which are false? $6=6,7=8-1,5+2=2+5,4+1=$ 5+2
	Subtracts with speed and accuracy.	Relates counting to addition and subtraction.
		Adds and subtracts within 20 demonstrating fluency for addition and subtraction within 10. Uses strategies such as counting backwards (13-5 $=8$ count backwards from the largest number (13) $13,12,11,10,9,8$) ; making ten (e.g., $8+6=8+2+4$ $=10+4=14$); decomposing a number leading to a ten (e.g., 13-4 = 13-3-1 = 10-1 = 9); using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, one knows $12-8=4$); and creating equivalent but easier or known sums (e.g... adding $6+7$ by creating the know equivalent $6+6+1=12+1=13$).
		Understands the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example: which of the following are true and which are false? $6=6,7=8-1,5+2=2+5,4+1=$ 5+2
Numbers and Operations in Base Ten	Counts by 1's starting at any number (to 50 by December, 100 by March, 120 by June).	Counts to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral. For example: count on from 68-68, 69, 70, 71 etc.
	Reads and Write s Numbers by 1's starting at any number (to 50 by December, 100 by March, 120 by June).	Counts to 120, starting at any number less than 120. In this range, read and write numerals and represents a number of objects with a written numeral. For example: write starting at $68-68,69,70,71$ etc.
	Understands that the two digits of a two-	Understands that the two digits of a two-digit number represent amounts of tens and ones.

	digit number represent the amounts of tens and ones.	Understands the following as special cases: a. 10 can be thought of as a bundle of ten ones called a "ten." b. The numbers from 11-19 are comprised of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers $10,20,30,40,50,60,70,80,90$ refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).
	Uses place value understanding to add and subtract twodigit numbers.	Adds within 100, including adding a two-digit number and a one-digit number, and adding a twodigit number and a multiple of 10 , using concrete models, or drawings, and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
		Understands that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. For example: $23+64=87$ can be though of as $20+60=80$ and $3+4=7$ then $80+7=87$
		Given a two-digit number mentally finds 10 more or 10 less than the number, without having to count; explain the reasoning used.
		Subtracts multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
	Compares two-digit numbers using >, < or $=$	Compares two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols $>,=$, and <.
Measurement and Data	Measures lengths and compare objects based on length.	Orders three objects by length; compares the lengths of two objects indirectly by using a third object.
		Expresses the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; Limits to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps

$\left.\begin{array}{|l|l|l|}\hline & & \begin{array}{l}\text { Understands that the length measurement of an } \\ \text { object is the number of same-size length } \\ \text { measurement of an object is the number of same- } \\ \text { size length units that span it with no gaps or } \\ \text { overlaps. }\end{array} \\ \hline & \begin{array}{l}\text { Tells and writes time } \\ \text { (in hours by } \\ \text { December and half } \\ \text { hours by March and } \\ \text { June). }\end{array} & \begin{array}{l}\text { Tells and writes time in hours and half-hours } \\ \text { using analog and digital clocks. }\end{array} \\ \hline & \begin{array}{l}\text { Reads and interprets } \\ \text { graphs. }\end{array} & \begin{array}{l}\text { Organizes, represents, and interprets data with } \\ \text { up to three categories; ask and answer questions } \\ \text { about the total number of data points, how many } \\ \text { in each category, and how many more or less are } \\ \text { in one category than in another. }\end{array} \\ \hline \text { Geometry } & \begin{array}{l}\text { Names coins and their } \\ \text { values. }\end{array} & \begin{array}{l}\text { Not a first grade Common Core State Standard } \\ \text { but a basic skill used in Bridges and standardized } \\ \text { testing (NWEA). }\end{array} \\ \hline \text { Distinguishes } \\ \text { important attributes } \\ \text { of various shapes (2D } \\ \text { and 3D). } & \begin{array}{l}\text { Distinguishes between defining attributes (e.g., } \\ \text { triangles are closed and three-sided) versus non- } \\ \text { defining attributes (e.g., color, orientation, overall } \\ \text { size); builds and draws shapes to possess defining } \\ \text { attributes. }\end{array} \\ \hline \text { Composes 2 } \\ \text { Dimensional and 3 } \\ \text { Dimensional shapes. } & \begin{array}{l}\text { Composes two-dimensional shapes (rectangles, } \\ \text { squares, trapezoids, triangles, half-circles, and } \\ \text { quarter circles) or three-dimensional shapes } \\ \text { (cubes, right rectangular prisms, right circular } \\ \text { cones, and right circular cylinders) to create a } \\ \text { composite shape, and compose new shapes from } \\ \text { the composite shape. }\end{array} \\ \hline \text { Partitions circles and rectangles into two and four } \\ \text { equal shares, describe the shares using the words } \\ \text { halves, fourths, and quarters, and uses the } \\ \text { phrases half of, fourth of, and quarter of. } \\ \text { Describes the whole as two of or four of the } \\ \text { shares. Understand for these examples that } \\ \text { decomposing into more equal shares creates } \\ \text { smaller shares. }\end{array}\right\}$

